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Workshop material

Ÿ Slides

https://forensic-data-science.net/#EAFS2025
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Additional training 

Ÿ Concepts of forensic inference and statistics

Ÿ Master’s level continuing professional development course

Ÿ Online delivery with weekly interactive sessions

Ÿ Delivered in 22 weeks spread over 6 months

Ÿ ~1 day per week workload

Ÿ Competency assessment

https://www.aston.ac.uk/study/courses/concepts-forensic-inference-and-statistics-standalone-module/
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Preliminaries:

Black boxes
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Ÿ Both calibration and validation treat forensic-evaluation systems as black boxes:

Ÿ not concerned with what is inside the box 

Ÿ only with what the box outputs in response to inputs

Preliminaries – black boxes
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Preliminaries – black boxes

1
78

BLACK BOX
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Preliminaries – black boxes

BLACK BOX 156
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Preliminaries – black boxes

156
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Preliminaries – black boxes
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Preliminaries – black boxes
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Preliminaries – black boxes

BLACK BOX 156
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Preliminaries:

Logarithms
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Ÿ Base 10 logarithms

Preliminaries – logarithms
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Ÿ Base 2 logarithms

Preliminaries – logarithms
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Ÿ Natural logarithms

Ÿ ln = loge

Ÿ e ≈ 2.718 (Euler’s number)

Preliminaries – logarithms
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Preliminaries – logarithms

Ÿ in favour of the  denominator hypothesis

are in the range:

      0 to 1

Ÿ in favour of the  numerator hypothesis

are in the range:

      1 to +∞

Likelihood ratios

Ÿ in favour of the  denominator hypothesis

are in the range:

      −∞ to 0

Ÿ in favour of the  numerator hypothesis

are in the range:

      0 to +∞

Log likelihood ratios
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Calibration in weather forecasting
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Ÿ Weather forecaster predicts:

Ÿ Probability of precipitation for tomorrow is 40%.

Ÿ The next day it either rains or it doesn’t rain.

Ÿ Looking at lots of days for which the weather forecaster’s PoP was 40%, on what 

percentage of those days did it actually rain? 

Calibration in weather forecasting
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Calibration in weather forecasting

Ÿ Prediction: 40%

Ÿ Actual:  40%

Not well calibrated: Ÿ Prediction: 40%

Ÿ Actual:  80%

Well calibrated:

J

L
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Ÿ Solution:

Ÿ Collect data from a large number of past days.

Ÿ For each day collect:  prediction                actual weather

Ÿ Use those data to train a calibration model.

Ÿ Use the model to calibrate future predictions. 

Calibration in weather forecasting
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Calibration in weather forecasting

original
forecast
model

calibration
model

40% 80%

uncalibrated
output

calibrated
output

predictor
variables



23

Calibration in weather forecasting

calibrated
forecast
system

80%

calibrated
output

predictor
variables
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Calibration principles
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Ÿ If:

Ÿ a model is a parsimonious parametric model

Ÿ there is a large amount of training data relative to the number of parameter values to 

be estimated

Ÿ the data are representative of the relevant population

Ÿ the assumptions of the model are not violated by the population distributions

Ÿ Then the output of the model will be well calibrated

Calibration principles
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Ÿ In forensic science:

Ÿ Models often fit complex distributions to high-dimensional data

Ÿ The amount of case-relevant training data is often small relative to the number of 

parameter values to be estimated

Ÿ The assumptions of the models may be violated

Ÿ Therefore:

Ÿ The outputs of the models are often not well calibrated

Calibration principles
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Ÿ Solution:

Ÿ Treat the output of the first (complex) model as an uncalibrated log likelihood ratio 

(a score)

Ÿ Use a parsimonious model to convert the score to a calibrated log likelihood ratio 

Vocabulary:

“score” = “uncalibrated log likelihood ratio”

“score” ≠ “similarity score”

Calibration principles
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questioned-source feature vector(s)

known-source feature vector(s)

relevant-population feature vectors

score

feature to score model

test score

same-source scores

different-source scores

calibrated log
likelihood ratio

score to log likelihood ratio model

Calibration principles
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Ÿ Take data that: 

Ÿ represent the relevant population in the case

Ÿ reflect the conditions of the questioned-source and known-source items in the case

Ÿ Construct same-source pairs and different-source pairs

Ÿ Use the first model to calculate a score for each pair

Ÿ Use the resulting same-source scores and different-source scores to train the calibration 

model

Calibration principles
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Ÿ The scores are unidimensional

Ÿ The calibration model is parsimonious

Ÿ There is a large amount of data relative to the number of parameter values to be estimated

Ÿ Therefore:

Ÿ The output of the calibration model is well calibrated

Calibration principles
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Ÿ Important condition:

Ÿ The data used for training the calibration model must: 

Ÿ represent the relevant population in the case

Ÿ including there being enough data

Ÿ reflect the conditions of the questioned-source and known-source items in the case

Ÿ including any mismatches in conditions

Ÿ If not, the system will be miscalibrated

Calibration principles
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Ÿ Important condition:

Ÿ The first model must output scores which are uncalibrated log likelihood ratios. 

They must take account of both:

Ÿ the similarity between the questioned-source and the known-source items

Ÿ their typicality with respect to the relevant population

Ÿ Similarity-only scores cannot be used

Calibration principles
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questioned-source feature vector(s)

known-source feature vector(s)

relevant-population feature vectors

score

feature to score model

test score

same-source scores

different-source scores

calibrated log
likelihood ratio

score to log likelihood ratio model

Calibration principles
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Calibration principles

questioned-source item

known-source item(s)

experience

score

human perception and judgement

test score

same-source scores

different-source scores

calibrated log
likelihood ratio

score to log likelihood ratio model
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Well-calibrated likelihood ratios
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Well-calibrated scales

Ÿ What is a well-calibrated set of scales?

Ÿ A set of scales for which:

Ÿ The mass stated in the readout is the same as 

the mass placed on the scale
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Well-calibrated scales

Ÿ Calibration is the process of 

adjusting the set of scales so 

that its output is well calibrated.
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Ÿ What is a well-calibrated likelihood-ratio system?

Ÿ The likelihood ratio of the likelihood ratio is the likelihood ratio

Well-calibrated likelihood ratios

LR =  
f ( LR | H  )s

f ( LR | H  )d

_________
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Ÿ Perfectly calibrated ln(LR) distributions

Ÿ Both same-source and different-source distributions 

are Gaussian, and they have the same variance
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Calibration models
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Calibration models
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Calibration models
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Calibration models
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Calibration models

Ÿ Score [x] to ln(LR) [y] mapping function:

y = a + bx

b =  
μ  – μs d

2
σ

_____

Ÿ Where μ , μ , σ are the statistics for the scoress d

a = – b 
μ  + μs d

2
_____
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Calibration models

Ÿ Score [x] to ln(LR) [y] mapping function:

y = a + bx

Ÿ In practice, logistic regression is commonly used to calculate a and b 

Ÿ It is more robust to violations of the assumptions of Gaussian distributions with the same 

variance
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Validation protocols
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Ÿ Take data that: 

Ÿ represent the relevant population in the case

Ÿ reflect the conditions of the questioned-source and known-source items in the case

Ÿ Construct same-source pairs and different-source pairs

Ÿ Use the calibrated forensic-evaluation system to calculate a likelihood ratio for each pair

Ÿ Assess how good each output is given knowledge of whether the corresponding input was 

a same-source pair or a difference-source pair

Validation protocols



50

Ÿ Important condition:

Ÿ The data used for training the calibration model must: 

Ÿ represent the relevant population in the case

Ÿ including there being enough data

Ÿ reflect the conditions of the questioned-source and known-source items in the case

Ÿ including any mismatches in conditions

Ÿ If not, the results will not be indicative of how well the forensic-evaluation system  

works in the context of the case

Validation protocols
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Ÿ If you have suitable data for calibration, you also have suitable data for validation, and 

vice versa:

Ÿ Cross-validation:

Ÿ leave-one-source out (for same-source comparisons)

Ÿ leave-two-sources out (for different-source comparisons)

Validation protocols
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Validation metric

log-likelihood-ratio cost (C )llr
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Ÿ Classification-error rate

Validation metric

output

same
source

different
source

input

same 
source

correct incorrect

different 
source

incorrect correct
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Validation metric

output

same
source

different
source

input

same 
source

hit miss

different 
source

false alarm
correct

rejection

Ÿ Classification-error rate

Ÿ names
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Ÿ Classification-error rate

Ÿ penalty values

Validation metric

output
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source

different
source

input
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Validation metric
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Validation metric

Ÿ Classification-error rate

Ÿ formula

E
N N

class
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d j
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Ÿ Penalty functions for calculating classification-error rate

Validation metric

log (posterior odds)10
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Ÿ Classification-error rate is not appropriate for assessing the performance of a system that 

outputs likelihood ratios because it is based on a threshold applied to posterior 

probabilities

Ÿ It is not appropriate for a forensic practitioner to assess posterior probabilities

Ÿ A threshold introduces a cliff-edge effect:

Ÿ two values close to each other but on opposite sides of the threshold get treated differently

Ÿ two values far from each other but on the same side of the threshold get treated the same

Validation metric
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Ÿ For a system that outputs likelihood ratios, a metric of performance should be based on 

likelihood-ratio values

Ÿ given a same-source input pair

Ÿ the larger the likelihood-ratio value the better the performance

Ÿ given a different-source input pair

Ÿ the smaller the likelihood-ratio value the better the performance

Validation metric
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Ÿ Penalty functions for calculating the log-likelihood-ratio cost (C ) llr

Validation metric
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Validation metric

Ÿ Formula for calculating C  llr

( )C
N LR N

LRllr

s i

N

s d j

N

d

s

i

d

j
= + + +ç

æ

è
ç

÷
ö

ø
÷

= =

å å
1

2

1
1

1 1
12

1

2

1

log log( )



62

Ÿ The better the performance of the system, the smaller the C  valuellr

Ÿ C  > 0llr

Ÿ A system that always responds with a likelihood-ratio value of 1 irrespective of the 

input provides no useful information

Ÿ the posterior odds will alway equal the prior odds

Ÿ this system will have C  = 1llr

Validation metric
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Ÿ The better the performance of the system, the smaller the C  valuellr

Ÿ C  > 1 can occur for an uncalibrated or miscalibrated systemllr

Ÿ this can be addressed by calibrating the system

Ÿ A well-calibrated system will have C  ≤ 1llr

Ÿ but C  ≤ 1 does not necessarily imply that the system is well calibratedllr

Ÿ If C  < 1, the system is providing useful informationllr

Validation metric
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Ÿ Perfectly calibrated ln(LR) distributions

Ÿ C  valuesllr
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Ÿ Perfectly calibrated ln(LR) distributions

Ÿ C  valuesllr

Ÿ Uncalibrated score distributions

Ÿ C  valuellr
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Ÿ Example C  valuesllr

Ÿ different 

forensic-voice-comparison 

systems validated on the 

same case-relevant data

Validation metric
System name

 

System type

 

Cllr

 

Batvox 3.1 

 

GMM-UBM

 

0.59

 
MSR GMM-UBM

 

GMM-UBM

 

0.58

 MSR GMM i-vector

 

GMM i-vector

 

0.45

 Batvox 4.1 

 

GMM i-vector

 

0.37

 Nuance 9.2

 

GMM i-vector

 

0.29

 
VOCALISE 2017B

 

GMM i-vector
 

0.27
 

VOCALISE 2019A
 

x-vector
 

0.25
 

E3FS3α
 

x-vector
 

0.21
 

Phonexia BETA4  x-vector  0.21 
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Ÿ Example C  valuesllr

Ÿ a forensic-voice-comparison 

system validated with 

questioned-speaker 

recordings of different 

durations

Validation metric
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Validation graphic

Tippett plot
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Ÿ For a system that outputs likelihood ratios, a graphical representation of performance 

should be based on likelihood-ratio values

Ÿ given a same-source input pair

Ÿ the larger the likelihood-ratio value the better the performance

Ÿ given a different-source input pair

Ÿ the smaller the likelihood-ratio value the better the performance

Validation graphic
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Ÿ Tippett plot:

Ÿ rank the log(LR) values resulting from same-source pairs from smallest to largest

Ÿ plot the proportion of values that are ≤ each log(LR) value

Ÿ value on y axis is the proportion of same-source log likelihood ratio values 

that are smaller than or equal to the value on the x axis

x −0.5 0.7 1.4 2 2.3 2.5 2.6 2.8 3.1 3.6

y 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Validation graphic
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Ÿ Tippett plot:
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Ÿ Tippett plot:

Ÿ rank the log(LR) values resulting from different-source pairs from smallest to largest

Ÿ plot the proportion of values that are ≥ each log(LR) value

Ÿ value on y axis is the proportion of different-source log likelihood ratio 

values that are larger than or equal to the value on the x axis

x −3.6 −3.1 −2.8 −2.6 −2.5 −2.3 −2 −1.4 −0.7 0.5

y 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Validation graphic
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Ÿ Tippett plot:
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Ÿ Tippett plots can be used to help:

Ÿ decide whether the system is well calibrated or whether there is obvious bias in the 

validation results

Ÿ decide whether the log-likelihood-ratio value calculated for the comparison of the 

actual questioned-source and known-source items in the case is supported by the 

validation results

Ÿ values within the range of the validation results would be unambiguously supported

Ÿ values just beyond the range of the validation results would be reasonable

Ÿ values far beyond the range of the validation results would not be reasonable

Validation graphic
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Ÿ Perfectly calibrated ln(LR) distributions

Ÿ C  valuesllr

Ÿ Uncalibrated score distributions

Ÿ C  valuellr
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Ÿ Tippett plots

Ÿ C  valuesllr
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Ÿ Example Tippett plots

Ÿ C  valuesllr
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Ÿ Example Tippett plots

Ÿ C  valuesllr

0.31
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Ÿ Example Tippett plots

Ÿ a forensic-voice-comparison system 

validated with questioned-speaker 

recordings of different durations

Ÿ Cllr values
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Bi-Gaussianized calibration
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Ÿ Perfectly calibrated ln(LR) distributions

Ÿ Both same-source and different-source distributions 

are Gaussian, and they have the same variance

Ÿ Perfectly-calibrated bi-Gaussian systems
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Ÿ Logistic-regression calibration applies a linear transformation in the log-likelihood-ratio 

space.

Ÿ Unless the distributions of the different-source and same-source uncalibrated log 

likelihood ratios are both Gaussian and have the same variance, the calibrated log 

likelihood ratios could be far from a perfectly calibrated .bi-Gaussian system

Ÿ Bi-Gaussianized calibration applies a non-linear (but still monotonic) transformation 

designed to bring the distributions closer to those of a perfectly-calibrated bi-Gaussian 

system.

Bi-Gaussianized calibration
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1. Calculate uncalibrated likelihood ratios (scores) for training data and test data.

2. Calibrate the training-data output of Step 1 using logistic regression.

3. Calculate  for the output of Step 2.Cllr

24. Determine the σ  of the perfectly-calibrated bi-Gaussian system with the  calculated at Cllr

Step 3.

5. Ignoring same-source and different-source labels, determine the mapping function from 

the empirical cumulative distribution of the training-data output of Step 1 to the 
2cumulative distribution of the two-Gaussian mixture with the σ  determined at Step 4.

6. Apply the mapping function determined at Step 5 to the test-data output of Step 1.

Bi-Gaussianized calibration
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1. Calculate uncalibrated likelihood ratios (scores) for training data and test data.

2. Calibrate the training-data output of Step 1 using logistic regression.

3. Calculate C  for the output of Step 2.llr

24. Determine the σ  of the perfectly-calibrated bi-Gaussian system with the  calculated at Cllr

Step 3.

5. Ignoring same-source and different-source labels, determine the mapping function from 

the empirical cumulative distribution of the training-data output of Step 1 to the 
2cumulative distribution of the two-Gaussian mixture with the σ  determined at Step 4.

6. Apply the mapping function determined at Step 5 to the test-data output of Step 1.

Bi-Gaussianized calibration



86

2Relationship between C  and σ  llr
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1. Calculate uncalibrated likelihood ratios (scores) for training data and test data.

2. Calibrate the training-data output of Step 1 using logistic regression.

3. Calculate C  for the output of Step 2.llr

24. Determine the σ  of the perfectly-calibrated bi-Gaussian system with the  calculated at Cllr

Step 3.

5. Ignoring same-source and different-source labels, determine the mapping function from 

the empirical cumulative distribution of the training-data output of Step 1 to the 
2cumulative distribution of the two-Gaussian mixture with the σ  determined at Step 4.

6. Apply the mapping function determined at Step 5 to the test-data output of Step 1.

Bi-Gaussianized calibration
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Cumulative distribution of Gaussian mixture
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Cumulative distribution of Gaussian mixture
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Cumulative distribution of Gaussian mixture
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Bi-Gaussianized calibration

Ÿ forensic-voice-

comparison data

Ÿ C  = 0.172llr

Ÿ target σ = 3.44
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Bi-Gaussianized calibration

Ÿ forensic-voice-

comparison data

Ÿ C  = 0.172llr

Ÿ target σ = 3.44
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Bi-Gaussianized calibration

Ÿ forensic-voice-

comparison data

Ÿ C  = 0.172llr

Ÿ target σ = 3.44
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Bi-Gaussianized calibration

Ÿ forensic-voice-

comparison data

Ÿ C  = 0.172llr

Ÿ target σ = 3.44
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Bi-Gaussianized calibration

Ÿ forensic-voice-

comparison data

Ÿ C  = 0.172llr

Ÿ target σ = 3.44
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Thank You
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