Calibration and validation of likelihood-ratio systems

Geoffrey Stewart Morrison

Forensic Data Science Laboratory Aston University

Workshop material

• Slides

https://forensic-data-science.net/#EAFS2025

Additional training

- Concepts of forensic inference and statistics
 - Master's level continuing professional development course
 - Online delivery with weekly interactive sessions
 - Delivered in 22 weeks spread over 6 months
 - ~1 day per week workload
 - Competency assessment

https://www.aston.ac.uk/study/courses/concepts-forensic-inference-and-statistics-standalone-module/

Contents

- Preliminaries
 - Black boxes
 - Logarithms
- Calibration
 - Calibration in weather forecasting
 - Calibration principles
 - Well-calibrated likelihood ratios
 - Calibration models

- Validation
 - Validation protocols
 - Validation metric (log-likelihood-ratio cost, $C_{\rm llr}$)
 - Validation graphic (Tippett plot)

- Calibration revisited
 - bi-Gaussianized calibration

Preliminaries: Black boxes

- Both calibration and validation treat forensic-evaluation systems as black boxes:
 - not concerned with what is inside the box
 - only with what the box outputs in response to inputs

Preliminaries: Logarithms

• Base 10 logarithms

			LR			
1/1000	1/100	1/10	1	10	100	1000
0.001	0.01	0.1	1	10	100	1000
10 ⁻³	$10^{^{-2}}$	10^{-1}	10^{0}	10 ¹	10^2	10 ³
			$\log_{10}(LR)$			
-3	-2	-1	0	+1	+2	+3

• Base 2 logarithms

			LR			
1/8	1/4	1/2	1	2	4	8
0.125	0.25	0.5	1	2	4	8
2 ⁻³	2^{-2}	2 ⁻¹	2 ⁰	2 ¹	2 ²	2 ³
			$log_2(LR)$			
-3	-2	-1	0	+1	+2	+3

- Natural logarithms
 - $ln = log_e$
 - $e \approx 2.718$ (Euler's number)

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

Likelihood ratios

• in favour of the denominator hypothesis are in the range:

0 to 1

• in favour of the numerator hypothesis are in the range:

1 to
$$+\infty$$

Log likelihood ratios

• in favour of the denominator hypothesis are in the range:

 $-\infty$ to 0

• in favour of the numerator hypothesis are in the range:

$$0$$
 to $+\infty$

- Weather forecaster predicts:
 - Probability of precipitation for tomorrow is 40%.
- The next day it either rains or it doesn't rain.
- Looking at lots of days for which the weather forecaster's PoP was 40%, on what percentage of those days did it actually rain?

Well calibrated:

• Prediction: 40%

40% • Actual:

Not well calibrated: • Prediction: 40%

80% • Actual:

• Solution:

• Collect data from a large number of past days.

• For each day collect: **prediction** actual weather

• Use those data to train a calibration model.

• Use the model to calibrate future predictions.

• If:

- a model is a parsimonious parametric model
- there is a large amount of training data relative to the number of parameter values to be estimated
- the data are representative of the relevant population
- the assumptions of the model are not violated by the population distributions
- Then the output of the model will be well calibrated

- In forensic science:
 - Models often fit complex distributions to high-dimensional data
 - The amount of case-relevant training data is often small relative to the number of parameter values to be estimated
 - The assumptions of the models may be violated
 - Therefore:
 - The outputs of the models are often not well calibrated

• Solution:

- Treat the output of the first (complex) model as an uncalibrated log likelihood ratio (a score)
- Use a parsimonious model to convert the score to a calibrated log likelihood ratio

Vocabulary:

```
"score" = "uncalibrated log likelihood ratio"

"score" ≠ "similarity score"
```


- Take data that:
 - represent the relevant population in the case
 - reflect the conditions of the questioned-source and known-source items in the case
- Construct same-source pairs and different-source pairs
- Use the first model to calculate a score for each pair
- Use the resulting same-source scores and different-source scores to train the calibration model

- The scores are unidimensional
- The calibration model is parsimonious
- There is a large amount of data relative to the number of parameter values to be estimated
- Therefore:
 - The output of the calibration model is well calibrated

- Important condition:
 - The data used for training the calibration model must:
 - represent the relevant population in the case
 - including there being enough data
 - reflect the conditions of the questioned-source and known-source items in the case
 - including any mismatches in conditions
 - If not, the system will be miscalibrated

- Important condition:
 - The first model must output scores which are uncalibrated log likelihood ratios.

 They must take account of both:
 - the similarity between the questioned-source and the known-source items
 - their typicality with respect to the relevant population
 - Similarity-only scores cannot be used

Well-calibrated likelihood ratios

Well-calibrated scales

- What is a well-calibrated set of scales?
- A set of scales for which:
 - The mass stated in the readout is the same as the mass placed on the scale

Well-calibrated scales

 Calibration is the process of adjusting the set of scales so that its output is well calibrated.

Well-calibrated likelihood ratios

- What is a well-calibrated likelihood-ratio system?
 - The likelihood ratio of the likelihood ratio is the likelihood ratio

$$LR = \frac{f(LR \mid H_{s})}{f(LR \mid H_{d})}$$

Well-calibrated likelihood ratios

Well-calibrated likelihood ratios

- Perfectly calibrated ln(LR) distributions
- Both same-source and different-source distributions are Gaussian, and they have the same variance

$$\mu_{\rm d} = -\frac{\sigma^2}{2} \qquad \mu_{\rm s} = +\frac{\sigma^2}{2}$$

(a)

Uncalibrated scores

$$\mu_{\rm d} = 3$$

$$\mu_{\rm d} = 3$$

$$\mu_{\rm s} = 6$$

$$\sigma = 1$$

(a)

Uncalibrated scores

$$\mu_{\rm d} = 3$$

$$\mu_{\rm d} = 3$$

$$\mu_{\rm s} = 6$$

$$\sigma = 1$$

(b) Score to ln(LR)mapping function

(c)

Calibrated ln(LR)

$$\mu_{\rm d} = -4.5$$

$$\mu_{d} = -4.5$$

$$\mu_{s} = +4.5$$

$$\sigma = 3$$

$$\sigma = 3$$

10

8

6

-6

-4

-2

In(LR)

(c)

Calibrated ln(LR)

$$\mu_{\rm d} = -4.5$$

$$\mu_{\rm d} = -4.5$$
 $\mu_{\rm s} = +4.5$

$$\sigma = 3$$

(d) ln(LR) to ln(LR)mapping function

• Score [x] to ln(LR)[y] mapping function:

$$y = a + bx$$

$$a = -b\frac{\mu_s + \mu_d}{2} \qquad b = \frac{\mu_s - \mu_d}{\sigma^2}$$

• Where μ_s , μ_d , σ are the statistics for the scores

• Score [x] to ln(LR)[y] mapping function:

$$y = a + bx$$

- In practice, logistic regression is commonly used to calculate a and b
- It is more robust to violations of the assumptions of Gaussian distributions with the same variance

- Take data that:
 - represent the relevant population in the case
 - reflect the conditions of the questioned-source and known-source items in the case
- Construct same-source pairs and different-source pairs
- Use the calibrated forensic-evaluation system to calculate a likelihood ratio for each pair
- Assess how good each output is given knowledge of whether the corresponding input was a same-source pair or a difference-source pair

- Important condition:
 - The data used for training the calibration model must:
 - represent the relevant population in the case
 - including there being enough data
 - reflect the conditions of the questioned-source and known-source items in the case
 - including any mismatches in conditions
 - If not, the results will not be indicative of how well the forensic-evaluation system works in the context of the case

• If you have suitable data for calibration, you also have suitable data for validation, and vice versa:

- Cross-validation:
 - leave-one-source out (for same-source comparisons)
 - leave-two-sources out (for different-source comparisons)

Validation metric log-likelihood-ratio cost ($C_{\rm llr}$)

• Classification-error rate

		output				
		same	different source			
input	same	correct	incorrect			
	different source	incorrect	correct			

• Classification-error rate

names

		output				
		same	different source			
input	same	hit	miss			
	different source	false alarm	correct rejection			

- Classification-error rate
 - penalty values

different same source source same source input different source

output

- Classification-error rate
 - formula

$$E_{\text{class}} = \frac{1}{2} \left(\frac{1}{N_{\text{s}}} \sum_{i=1}^{N_{\text{s}}} \left(\begin{array}{c} 0 \text{ if } y_i = \text{s} \\ 1 \text{ if } y_i = \text{d} \end{array} \right) + \frac{1}{N_{\text{d}}} \sum_{j=1}^{N_{\text{d}}} \left(\begin{array}{c} 1 \text{ if } y_j = \text{s} \\ 0 \text{ if } y_j = \text{d} \end{array} \right) \right)$$

miss:
$$y_i = d$$

false alarm:
$$y_j = s$$

• Penalty functions for calculating classification-error rate

- Classification-error rate is not appropriate for assessing the performance of a system that outputs likelihood ratios because it is based on a threshold applied to posterior probabilities
 - It is not appropriate for a forensic practitioner to assess posterior probabilities
 - A threshold introduces a cliff-edge effect:
 - two values close to each other but on opposite sides of the threshold get treated differently
 - two values far from each other but on the same side of the threshold get treated the same

• For a system that outputs likelihood ratios, a metric of performance should be based on likelihood-ratio values

- given a same-source input pair
 - the larger the likelihood-ratio value the better the performance
- given a different-source input pair
 - the smaller the likelihood-ratio value the better the performance

• Penalty functions for calculating the log-likelihood-ratio cost ($C_{\rm llr}$)

• Formula for calculating $C_{\rm llr}$

$$C_{\text{llr}} = \frac{1}{2} \left(\frac{1}{N_{\text{s}}} \sum_{i=1}^{N_{\text{s}}} \log_2 \left(1 + \frac{1}{LR_{\text{s}_i}} \right) + \frac{1}{N_{\text{d}}} \sum_{j=1}^{N_{\text{d}}} \log_2 \left(1 + LR_{\text{d}_j} \right) \right)$$

• The better the performance of the system, the smaller the $C_{\rm llr}$ value

•
$$C_{11r} > 0$$

- A system that always responds with a likelihood-ratio value of 1 irrespective of the input provides no useful information
 - the posterior odds will alway equal the prior odds
 - this system will have $C_{\rm llr} = 1$

- The better the performance of the system, the smaller the $C_{\rm llr}$ value
 - $C_{\rm llr} > 1$ can occur for an uncalibrated or miscalibrated system
 - this can be addressed by calibrating the system
 - A well-calibrated system will have $C_{\text{Ilr}} \leq 1$
 - but $C_{\text{IIr}} \leq 1$ does not necessarily imply that the system is well calibrated
 - If $C_{\rm llr} < 1$, the system is providing useful information

- Perfectly calibrated ln(LR) distributions
 - C_{llr} values

- Perfectly calibrated ln(LR) distributions
 - $C_{\rm llr}$ values
- Uncalibrated score distributions
 - C_{llr} value

0.51

- Example $C_{\rm llr}$ values
 - different
 forensic-voice-comparison
 systems validated on the
 same case-relevant data

System name	System type	$C_{ m llr}$
Batvox 3.1	GMM-UBM	0.59
MSR GMM-UBM	GMM-UBM	0.58
MSR GMM i-vector	GMM i-vector	0.45
Batvox 4.1	GMM i-vector	0.37
Nuance 9.2	GMM i-vector	0.29
VOCALISE 2017B	GMM i-vector	0.27
VOCALISE 2019A	x-vector	0.25
E3FS3α	x-vector	0.21
Phonexia BETA4	x-vector	0.21

- Example $C_{\rm llr}$ values
 - a forensic-voice-comparison
 system validated with
 questioned-speaker
 recordings of different
 durations

Validation graphic Tippett plot

- For a system that outputs likelihood ratios, a graphical representation of performance should be based on **likelihood-ratio values**
 - given a same-source input pair
 - the larger the likelihood-ratio value the better the performance
 - given a different-source input pair
 - the smaller the likelihood-ratio value the better the performance

• Tippett plot:

- rank the log(LR) values resulting from same-source pairs from smallest to largest
- plot the proportion of values that are \leq each $\log(LR)$ value
 - value on y axis is the **proportion of same-source log likelihood ratio values** that are **smaller than** or equal to the value on the x axis

x	-0.5	0.7	1.4	2	2.3	2.5	2.6	2.8	3.1	3.6
y	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1

• Tippett plot:

• Tippett plot:

- rank the log(LR) values resulting from different-source pairs from smallest to largest
- plot the proportion of values that are \geq each $\log(LR)$ value
 - value on y axis is the proportion of different-source log likelihood ratio values that are larger than or equal to the value on the x axis

X	-3.6	-3.1	-2.8	-2.6	-2.5	-2.3	-2	-1.4	-0.7	0.5
y	1	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1

• Tippett plot:

- Tippett plots can be used to help:
 - decide whether the system is well calibrated or whether there is obvious bias in the validation results
 - decide whether the log-likelihood-ratio value calculated for the comparison of the actual questioned-source and known-source items in the case is supported by the validation results
 - values within the range of the validation results would be unambiguously supported
 - values just beyond the range of the validation results would be reasonable
 - values far beyond the range of the validation results would not be reasonable

- Perfectly calibrated ln(LR) distributions
 - $C_{\rm llr}$ values
- Uncalibrated score distributions
 - C_{llr} value

• Tippett plots

• C_{llr} values

 $\log_{10}(LR)$

2

-3

-2

0.84

0.51

• Example Tippett plots

• C_{llr} values

1.07

• Example Tippett plots

• C_{llr} values

• Example Tippett plots

different variants of a
forensic-voice-comparison
system validated on the
same case-relevant data

• C_{llr} values

0.21

- Example Tippett plots
 - a forensic-voice-comparison system
 validated with questioned-speaker
 recordings of different durations
 - $C_{\rm llr}$ values

Well-calibrated likelihood ratios

- Perfectly calibrated ln(LR) distributions
- Both same-source and different-source distributions are Gaussian, and they have the same variance

$$\mu_{\rm d} = -\frac{\sigma^2}{2} \qquad \mu_{\rm s} = +\frac{\sigma^2}{2}$$

• Perfectly-calibrated bi-Gaussian systems

- Logistic-regression calibration applies a linear transformation in the log-likelihood-ratio space.
- Unless the distributions of the different-source and same-source uncalibrated log likelihood ratios are both Gaussian and have the same variance, the calibrated log likelihood ratios could be far from a perfectly calibrated bi-Gaussian system.
- Bi-Gaussianized calibration applies a non-linear (but still monotonic) transformation designed to bring the distributions closer to those of a perfectly-calibrated bi-Gaussian system.

- 1. Calculate uncalibrated likelihood ratios (scores) for training data and test data.
- 2. Calibrate the training-data output of Step 1 using logistic regression.
- 3. Calculate C_{IIr} for the output of Step 2.
- 4. Determine the σ^2 of the perfectly-calibrated bi-Gaussian system with the C_{llr} calculated at Step 3.
- 5. Ignoring same-source and different-source labels, determine the mapping function from the empirical cumulative distribution of the training-data output of Step 1 to the cumulative distribution of the two-Gaussian mixture with the σ^2 determined at Step 4.
- 6. Apply the mapping function determined at Step 5 to the test-data output of Step 1.

- 1. Calculate uncalibrated likelihood ratios (scores) for training data and test data.
- 2. Calibrate the training-data output of Step 1 using logistic regression.
- 3. Calculate C_{IIr} for the output of Step 2.
- 4. Determine the σ^2 of the perfectly-calibrated bi-Gaussian system with the C_{llr} calculated at Step 3.
- 5. Ignoring same-source and different-source labels, determine the mapping function from the empirical cumulative distribution of the training-data output of Step 1 to the cumulative distribution of the two-Gaussian mixture with the σ^2 determined at Step 4.
- 6. Apply the mapping function determined at Step 5 to the test-data output of Step 1.

Relationship between $C_{\rm llr}$ and σ^2

• for a perfectly-calibrated bi-Gaussian system

$$\sigma^2 = -\frac{\ln\left(\frac{\ln(C_{\rm llr})}{b} + 1\right)}{c}$$

$$b = 17.7$$
 $c = 9.33 \times 10^{-3}$

- 1. Calculate uncalibrated likelihood ratios (scores) for training data and test data.
- 2. Calibrate the training-data output of Step 1 using logistic regression.
- 3. Calculate C_{llr} for the output of Step 2.
- 4. Determine the σ^2 of the perfectly-calibrated bi-Gaussian system with the C_{llr} calculated at Step 3.
- 5. Ignoring same-source and different-source labels, determine the mapping function from the empirical cumulative distribution of the training-data output of Step 1 to the cumulative distribution of the two-Gaussian mixture with the σ^2 determined at Step 4.
- 6. Apply the mapping function determined at Step 5 to the test-data output of Step 1.

Cumulative distribution of Gaussian mixture

Cumulative distribution of Gaussian mixture

Cumulative distribution of Gaussian mixture

- forensic-voicecomparison data
- $C_{\rm llr} = 0.172$
- target $\sigma = 3.44$

- forensic-voicecomparison data
- $C_{\rm llr} = 0.172$
- target $\sigma = 3.44$

- forensic-voicecomparison data
- $C_{\rm llr} = 0.172$
- target $\sigma = 3.44$

- forensic-voicecomparison data
- $C_{\rm llr} = 0.172$
- target $\sigma = 3.44$

- forensic-voicecomparison data
- $C_{\rm llr} = 0.172$
- target $\sigma = 3.44$

Thank You

